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- LETTER TO THE EDITOR
Transitions in spectral statistics
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Received 1 June 1994

Abstract, We present long-range statistical properties of a recently introduced unitary random
matrix ensemble, whose short-range correlations were found to describe a transition from Wigner
to Poisson-type as a function of a sinple parameter. We argue, by evaluating the two-level
correlation fumction of a different solvable model, that the transition is perhaps a quite general
feature for a class of models. Our analytic results compare well with numerical studies on a
variety of physical systems. We discuss the possibility of observing experimentally the signature
of such transitions,

Statistical properties of eigenvaiunes of matrices describing a wide variety of guanturn
systems follow the universal results of random matrix models [1]. Such models were
originally conceived by Wigner to provide a theoretical framework for the understanding
of the statistics of energy levels of heavy nuclei [2,3]. On very general grounds the
randomness of the matrix elements, subject to any relevant symmetry requirements, gives
rise to a model of eigenvalues repelling each other with a logarithmic interaction, resulting
in strong correlations. The normalizability condition of the joint probability distribution
requires a confining potential for the eigenvalues, which can be thought of as resulting from
some physical constraint (e.g. a given eigenvalue density) [4]. For a given symmetry of
the matrix, as long as the eigenvalues arg well confined, the statistical properties of the
levels in the bulk of the spectrum seem to be independent of the particular choice of the
constraint [3], and follow a universal distribution known generally as the Wigner distribution.
However, it is becoming increasingly evident that while the level statistics of a wide variety
of systems can be described very well by the highly correlated Wigner distribution, many
of these systems show a transition to a completely uncorrelated Poisson distribution when
some relevant parameter is changed [1]. Such transitions in the speciral statistics might
correspond to e.g. a chaotic—regular or a metal-insulator transition in the system. Attempts
have been made to describe the transition in one particular statistical property, namely the
nearest-neighbour spacing distribution (which is sensitive to only the short-range correlations
between eigenvalues), either by purely heuristic interpolation schemes [6] or by considering
intermediate regimes where the phase space is partly chaotic and partly regular [7]. These
results differ qualitatively from the one case where the transition has been studied in detail
numerically, namely the case of metal-insulator transitions in a disordered system described
by the microscopic random tight-binding Anderson Hamiltonian [8]. As far as we know,
no attempt has been made to explain even heuristically the transition in other statistical
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properties, such as the number variance, V,, or the so-called Aj statistics which provides
a quantitative measure of the long-range rigidity of the spectrum, although there exists
numerical evidence for such transitions in both chaotic [9] and disordered systems [1011].

Recently we have argued that the appropriate random transfer matrix model related to
disordered conductors belong to a new family of random matrices; a solvable model then
predicted a very specific type of transition in the nearest-neighbour spacing distribution as
a function of a single parameter [12]. In the present work we first show, by evaluating the
two-level correlation function of a very different (though related) but still solvable model,
that the nature of this transition in spectral statistics is not peculiar to the model considered
in [12], but is perhaps generic for a class of models with weak confining potentials. 'We then
calculate, for the above models, two other statistical properties which describe the transition
in the long-range correlation in the bulk of the spectrum, namely the number variance and
the Aj statistics. We show that the variance of a linear statistic is controlled by a single
parameter in these models, and is no longer universal. Our result includes the theorem of
Dyson and Mehta [3] on the universality of the variance of any linear statistic as a special
case in the appropriate limit. As an example, we give an explicit expression for the number
variance. The nature of the transition in the A statistics agrees with earlier numerical results
for transfer matrices in disordered systems [10]. Moreover, even though the modsls were
originally constructed for transfer matrices, numerical results for the random tight-binding
Anderson Hamiltonian [11] strongly hints that the distribution of energy eigenvalues also
follows a similar transition. If this is true, then the solvable models allow us to calculate and
predict further consequences of such transitions in the energy level statistics. In particular,
we predict how the ‘correlation hole’ in the Fourier transform of the absorption spectrum
of small metallic particles should be destroyed with increasing disorder, and discuss the
possibility of observing it experimentally.

As mentioned earlier, the random matrix models are characterized by the confining
potential V{x). The statistical properties of the levels can then be evaluated from
the two-level correlation function which can be obtained explicitly from a set of
orthogonal polynomials defined with the potential as the weight factor [3]. We will
call the random matrix ensemble introduced in [12] the ‘g-Hermite’ unitary ensemble,
because the orthogonal polynomials defined by the potential are the ‘g-generalization’
[13] of the classical Hermite polynomials that characterize the conventional Wigner or
Gaussian unitary ensemble (GUE). The correlation function for the g-Hermite ensemble
was found to depend crucially on some parameter 8 = In(l/g) characterizing the
potential

B sinw{s — v)
27 sinh(B(z — v)/2)

where the scaled variables u and v are such that the density K (i, u) is unity. As
noted in [12], this reduces to the corresponding comelation function for the GUE in
the limit 8§ — 0. The above expression for the kernel is valid in the bulk of
the specttum and for 0 < B < 2m% We observe here that the nearest-neighbour
spacing distribution as a function of the parameter § obtained earlier for this model is
remarkably similar to the one obtained numerically in [8] for the energy eigenvalues
corresponding to a microscopic Anderson model for disordered conductors going through
a metal-insulator transition. (The difference in the power-law behaviour for small
spacing and the precise point where all different curves cross is due entirely to the
fact that the numerical results are for orthogonal symmetry, while our model has
unitary symmetry,) In order to establish that the above two-level kernel is not a

K(u,v) = (1)
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peculiarity of the g-Hermite ensemble, we first consider another ensemble defined by the
potential

Vix;q) = Zln [1+Q- q)q x ' )

n=0 . .
where the eigenvalue x is from O to oo as opposed to the range —oo to +4-co for the g-
Hermite ensemble. For large x and small g, this potential behaves as [Inx]?, as in the
g-Hermite case, but for small x it behaves linearly as opposed to the quadratic dependence
for the g-Hermite case. This potential was considered in [14] as a possible model for
the transfer matrix describing disordered conductors. (Note that the density of eigenvalues
at the origin for this potential do not scale with the number of eigenvalues N [14], so
the usual mean-field large-N expansion breaks down). The orthogonal polynomials for
this potential are the g-Laguerre polynomials, a generalization™of the classical Laguerre
polynomials [15]; we therefore call it the -‘g-Laguerre’ model. From the asymptotic
properties of the g-Laguerre polynomials [14], we obtain the two-level kernel in the bulk of
the spectrum as a function of £ = In(1/g) 3 1 in the limit where the number of eigenvalues
N = cor

1/4 /4
K@,y = xc_sty [(%) sm(%]nx)cos(-ﬁlny) (%) sin(;}lny)cos(; lnx)] .
(3)

In order to compare with the Wigner dlstnbut(on for which the average spacing between
adjacent levels is unity, it is necessary to use a transformation of variables x =
ety = e¥* guch that the density in the new variable is uniform and unity. In
this new variable, the kernel becomes precisely the same as given in (1) for g-Hermite
ensembles. It therefore follows that the statistical properties of the levels in the two
models are identical in the bulk. Note that for  — 0, the two models reduce
to classical Hermite and Laguerre models, which are known to have identical kernels
in the bulk [5]. (We shall not consider here the interesting ‘edge effects’ in the
Laguerre ensemble [16].) Thus the statistical properties of the levels in the bulk of the
spectrum for large N are insensitive to the details of the model as long as some general
features of the model (weak [Inx]* confinement of the large eigenvalues) remain the
same.,

We now evaluate the number variance apd the A; statistics for the g-Hermite model,
expecting that these results will be valid for at least a class of similar models. The variance
V, = n* —7* of the pumber of eigenvalues z in an interval (—s/2, 5/2) can be expressed
as [3]

52 512 N 3 o 1_- k
o= [ o[ abe-n-re-n=2 [ @w=FEu- @

~5/2 -3f2 ) - . ‘

where the two-level form factor 6(k) is the Fourier transform of the two-level cluster function
¥ (x) = [K(x)1%. For the kernel given by (1), we obtain
4xb(k) = (k| + 2m)cothf(jk| + 2m)z /B8] + (k| — 2= )coth[(|k]| — 2)m /B

—2lkjcoth(jk)=/8) . 5)
Note that b(k) reduces to the exact GUE result in the limit 8 — 0. To an excellent
approximation, (k) contributes negligibly to the integral in (4) for k > 27. We find

s 1 —cosks

1 km Bs
Va(s) =[1— ]s+ [C1(23rs)+1]+— - dk—-k——[coth (E_-) k?r] (6)-
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where Ci is the cosine integral, and p is defined as

2n? B
p = coth (73-) - | m
which goes to 1(0) for 8 — 0(c0). We can obtain an explicit expression for the number
variance by approximating the factor [coth(km /85) — Bs/kar] under the integral by kx /385
up to k =3psp/n and by p for larger k. The result

L o [, _ sin@3Bps/x) 272 38ps
oo S]] L () a2

agrees with the numerical evaluation of the integral up to a small S-dependent constant
for large s as well as corrections of order 1/s. Equation (8) clearly exhibits the crucial
dependence of the number variance on the parameter 8. As expected, 8 = 0 corresponds
to the exact GUE resuit, with a logarithmic dependence on s; increasing 8 corresponds to
a transition towards a Poisson result, which is linear in s. Note that the variance of an
arbitrary linear statistic f = Y, f(x,), of which V, is a special case, will depend on the
form factor (5} and is clearly no longer universal

2 = -
Var(f) = = fo dk[1 = BN F @ ©

where f(k) is the Fourier transform of f(x). This result generalizes the Dyson—Mehta
theorem [3] on the variance of arbitrary linear statistics and reduces to it when g — 0.
The As; statistics is a measure of the size of fluctuations of a given level sequence
against a best straight line fit for that level sequence. I s(x) is the staircase function fur a
level sequence (in the variable where the density is uniform} in a given interval, then one
defines & variance A; = (min,q,,g[(s(u) — Au — B)z]}, where {} denotes an average over
an ensemble of level sequences. This can be expressed in terms of the two-level kernel
K (1, v) [3]. For the g-Hermite ensemble we obtain the small and large 8 limits explicitly

1
As(s, B) = E;[ln@m) +y—3]+ "?:7.-::_2 +0 ((ﬁs)4) (10)
for B8 « 1/s, which reduces to the GUE result for 8 =0, and
s, 8) _1[ B _ 2 s
s 15 [2::2 exp(4::2/5)—1]+c+0(° ) (1)

for # 3 1/s, which reduces to the Poisson result for 8 — oo. Here C is a numerical
constant independent of s and very weakly dependent on 8. Note that since the ratio Aa/s
is finite, A3 always has a linear dependence for large enough s, with a slope that increases
with increasing 8, approaching the Poisson limit for 8 -+ oo, Figure 1 shows the complete
solution (obtained from numericzl evaluation of the integrals involved) for various values of
B. The deviation from the GUE result as a function of some parameter is qualitatively similar
to the deviations seen numerically in both the transfer matrix [10] and energy eigenvalues
[11] corresponding to the tight-binding Anderson Hamiltonian for disordered conductors, as
well as for the eigenvalues of the evolution operator corresponding to the Fermi-acceleration
model [91.

We find that the statistical properties of the g-Hermite (or the g-Laguerre, in the bulk)
ensembles are similar to those of a wide variety of gquantum systems, including energy
levels of disordered conductors, studied numerically. Although we are not able to derive
these ensembles from microscopic Hamiltonians at present, it is useful to explore specific
spectroscopic signatures of the ensembles so that their relevance to given physical systems
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Figure 1. Aj statistics as a fanction of the length 5 of a level sequence for different values of
B for the g-Hermite model. The 8 = 0 curve coincides with the GUE resuilt while the 8 = oo
line coincides with the Poisson result.
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Figure 2. The function [1 ~ &(k)] showing the change in the correlation hole with increasing
B. Interpreting k as time and with the dashed line replacing an ideal vertical drap at very smaill
time for finite number of levels n, this should correspond to the square of the Fourier transform
of an experimentally obtained spectrum for a system of small disorderd particles, Increasing 8
will correspond to increasing disorder [12].

can be tested experimentally. The obvious problem of looking for evidence of these
transitions is the difficulty to extract a ‘stick spectrum’ from experimental data where a
large number of levels are usually lost either in the noise or in unresolved bands. One
way to avoid this problem is to take direct Fourier transform (FT) of the raw experimental
data; the ensemble average of the square of the FT will show a ‘correlation hole’ if the
spectrum is chaotic, i.e. if it has a Wigner distribution {17]. The size of the correlation
hole is proportional to [1 —b(k)], where &(k) is the two-leve! form factor meationed before.
‘We plot this function for the g-Hermite ensemble obtained from (5) for various values of
g in figure 2. The depth of the hole decreases from the Wigner result in a specific way
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towards the Poisson limit of no correlation hole (b(k) = 0). Thus, for example, microwave
experiments on ensembles of small metallic particles (of roughly equal size) [18] at various
disorders might reveal this behaviour (increasing disorder will correspond to increasing g
[12]). Of course one needs sufficiently low temperature and smail system size so that the
energy levels are not broadened into a continunm. For a metallic system, a crude estimate
within a simple electron gas model suggests that for 50 nm size particles one might expect
to observe the effect at a temperature in the mK range. Because there is no contribution to
the correlation hole from insuvlators, it might be possible to put the metallic particles in an
insulating matrix.
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