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LETTER TO THE EDITOR 

Transitions in spectral statistics 
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Department of Mathematics, Imperial College, London SWl 2BZ. UK 

Received 1 June 1994 

Abstract We present long-range statistical propties of a recently introduced u n i w  random 
matrix ensemble, whose shon-range wrrelations were found to describe a transition from Wigner 
to Poisson-type as a function of a single parameter. We argue, by evaluating the hvo-level 
correlation function of a different solvable model. that the transition is perhaps a quite general 
fez” for a class of models. Our analytic results compare well with numerical studies on a 
variety of physical systems. We discuss the possibility of observing experimentally the signaluure 
of such uansltions. 

Statistical properties of eigenvalues of matrices describing a wide variety of quantum 
systems follow the universal results of random,matrix models [l]. Such models were 
originally conceived by Wigner to provide a theoretical framework for the understanding 
of the statistics of energy levels of heavy nuclei [2,3]. On very general grounds the 
randomness of the matrix elements, subject to any relevant symmetry requirements, gives 
rise to a model of eigenvalues repelling each other with a logarithmic interaction, resulting 
in strong correlations. The normalizability condition of the joint probability distribution 
requires a confining potential for the eigenvalues, which can be thought of as resulting from 
some physical constraint (e.g. a given eigenvalue density) [4]. For a given sy”eIzy of 
the matrix, as long as the eigenvalues ap well confined, the statistical properties of the 
levels in the bulk of the spectrum seem to be independent of the particular choice of the 
constraint [5], and follow a universal distribution known generally as fhe Wigner distribution. 
However, it is becoming increasingly evident that while the level statistics of a wide variety 
of systems can be described very well by the highly correlated Wigner distribution, many 
of these systems show a transition to a completely uncorrelated Poisson distribution when 
some relevant parameter is changed [l]. Such transitions in the spectral statistics might 
correspond to e.g. a chaotioregular or a metal-insulator transition in the system. Attempts 
have been made to describe the transition in one particular s ta t idid property, namely the 
nearest-neighbour spacing distribution (which is sensitive to only the short-range correlations 
between eigenvalues), either by purely heuristic interpolation schemes [6]~or by considering 
intermediate regimes where the phase space is partly chaotic and partly regular [7]. These 
results differ qualitatively from the one case,where the transition has been studied in derail 
numerically, namely the case of metal-insulator transitions in a disordered system described 
by the microscopic random tight-binding Anderson Hamiltonian [8]. As far as we know, 
no attempt has been made to explain even heuristically the transition in other statistical 
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properties, such as the number variance, V,,, or the so-called A3 statistics which provides 
a quantitative measure of the long-range rigidity of the spectrum, although there exists 
numerical evidence for such transitions in both chaotic [9] and disordered systems [lo 111. 

Recently we have argued that the appropriate random transfer matrix model related to 
disordered conductors belong to a new family of random matrices; a solvable model then 
predicted a very specific type of transition in the nearest-neighbour spacing distribution as 
a function of a single parameter [l2]. In the present work we first show, by evaluating the 
two-level correlation function of a very different (though related) but still solvable model, 
that the nature of this transition in spectral statistics is not peculiar to the model considered 
in [ 121, hut is perhaps generic for a class of models with weak confining potentials. We then 
calculate, for the above models, two other statistical properties which describe the transition 
in the long-range correlation in the bulk of the spectrum, namely the number variance and 
the A3 statistics. We show that the variance of a linear statistic is controlled by a single 
parameter in these models, and is no longer universal. Our result includes the theorem of 
Dyson and Mehta [3] on the universality of the variance of any linear statistic as a special 
case in the appropriate limit. As an example, we give an explicit expression for the number 
variance. The nature of the transition in the A3 statistics agrees with earlier numerical results 
for transfer matrices in disordered systems [lo]. Moreover, even though the models were 
originally constructed for transfer matrices, numerical results for the random tight-binding 
Anderson Hamiltonian [ 111 strongly hints that the distribution of energy eigenvalues also 
follows a similar transition. If this is true, then the solvable. models allow us to calculate and 
predict further consequences of such transitions in the energy level statistics. In particular, 
we predict how the ‘correlation hole’ in the Fourier transform of the absorption spectrum 
of small metallic particles should be destroyed with increasing disorder, and discuss the 
possibility of observing it experimentally. 

As mentioned earlier. the random matrix models are characterized by the confining 
potential V ( x ) .  The statistical properties of the levels can then be evaluated from 
the two-level correlation function which can be obtained explicitly from a set of 
orthogonal polynomials defined with the potential as the weight factor [3]. We will 
call the random matrix ensemble introduced in [I21 the ‘q-Hermite’ unitary ensemble, 
because the orthogonal polynomials defined by the potential are the ‘q-generalization’ 
[I31 of the classical Hermite polynomials that characterize the conventional Wigner or 
Gaussian unitary ensemble (GLEE). The correlation function for the q-Hermite ensemble 
was found to depend crucially on some parameter j3 = In(l/q) characterizing the 
potential 

,3 sinn(u -U) 
2n sinh(B(u - u)/2) 

K ( u ,  U) = - 
where the scaled variables U and U are such that the density K(u,  U) is unity. As 
noted in [12], this reduces to the corresponding correlation function for the ~ u e  in 
the limit j3 + 0. The above expression for the kernel is valid in the bulk of 
the spectrum and for 0 < j3 e 2n2. We observe here that the nearest-neighbour 
spacing distribution as a function of the parameter ,9 obtained earlier for this model is 
remarkably similar to the one obtained numerically in [8] for the energy eigenvalues 
corresponding to a microscopic Anderson model for disordered conductors going through 
a metal-insulator transition. (The difference in the power-law behaviour for small 
spacing and the precise point where all different curves cross is due entirely to the 
fact that the numerical results are for orthogonal symmetry, while our model has 
unitary symmetry.) In order to establish that the above two-level kernel is not a 
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peculiarity of the q-Hermite ensemble, we first consider another ensemble defined by the 
potential 

m 
V ( X :  q)  = C l n  [I + (1 - q)qnx] (2) 

where the eigenvalue x is kom 0 to M as opposed to the range -M to +CO for the q- 
Hermite ensemble. For large x and small q. this potential behaves as [lnxI2, as in the 
q-Hermite case, but for small x it behaves linearly as opposed to the quadratic dependence 
for the q-Hermite case. This potential was considered in [14] as a possible model for 
the transfer matrix describing disordered conductors. (Note that the density of eigenvalues 
at the origin for this potential do not scale with the number of eigenvalues N [14], so 
the usual mean-field large-N expansion breaks down). The orthogonal polynomials for 
this potential are the q-Laguerre polynomials, a generalization of the classical Laguerre 
polynomials [U]; we therefore call it the 'q-Laguerre' model. From the asymptotic 
properties of the q-Laguerre polynomials [14], we obtain the two-level kernel in the bulk of 
the spectrum as a function of @ = ln(l/q) >> 1 in the limit where the number of eigenvalues 
N + w :  

"=O 

(3) 
In order to compare with the Wigner distribution for which the average spacing between 
adjacent levels is unity, it is necessary to use a transformation of variables x = 
$au, y = e, zfiu, such that the density in the new variable is uniform and unity. In 
this new vanable, the kernel becomes precisely the same as given in (1) for q-Hermite 
ensembles. It therefore follows that the statistical properties of the levels in the two 
models are identical in the bulk. Note that for @ + 0, the two models reduce 
to classical Hermite and Laguerre models, which are known to have identical kernels 
in the bulk 151. (We shall not consider here the interesting 'edge effects' in the 
Laguene ensemble 1161.) Thus the statistical properties of the levels in the bulk of the 
spectrum for large N a e  insensitive to the details of the model as long as some general 
features of the model (weak [ l n ~ ] ~  confinement of the large eigenvalues) remain the 
same. 

We now evaluate the number variance and the A3 statistics for the q-Hermite model, 
expecting that these results will be valid for at least a class of similar models. The variance 
V. = 2 - Tiz of the number of eigenvalues n in an interval (-s/Z. s/2) can be expressed 
as P I  

2 '  1 -cosks 
V&) = Sl/ 'dx ["dy [6(x - y) - Y(x  - y)] =.- / dk kz -W)l (4) 

-si2 --si2 Ir 0~ 
where the two-level form factor b(k) is the Fourier transform of the two-level cluster function 
Y ( x )  = [K(x)] ' .  For the kernel given by (l), we obtain 
4 ~ b ( k )  = (PI+ 2~)~0th[ ( lk l+  ~z )K/@]  + (lkl - b)~oth[(lkl - 2~)1r/@1 

-2lklcoth(lkl~/B) . (5) 
Note that b(k) reduces to the exact GUE result in the limit @ + 0. To an excellent 
approximation, b(k) contributes negligibly to the integral in (4) fork > 2n. We find 
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where Ci is the cosine integral, and p is defined as 

p=coth  - -& (2a (7) 

which goes to l(0) for j3 + O(o0). We can obtain an explicit expression for the number 
variance by approximating the factor [coth(kn/j3s) - j3s/kx] under the integral by kn/3j3s 
up to k = 3j3sp/n and by p for larger k. The result 

agrees with the numerical evaluation of the integral up to a small p-dependent constant 
for large s as well as corrections of order l/s. Equation (8) clearly exhibits the crucial 
dependence of the number variance on the parameter j3. As expected, B = 0 corresponds 
to the exact CUE result, with a logarithmic dependence on s; increasing j3 corresponds to 
a transition towards a Poisson result, which is linear in s. Note that the variance of an 
arbitrary linear statistic f = En f ( x n ) ,  of which V. is a special case, will depend on the 
form factor (5) and is clearly no longer universal 

(9) 

where f(k) is the Fourier transform of f ( x ) .  This result generalizes the Dyson-Mehta 
theorem [3] on the variance of arbitrary linear statistics and reduces to it when j3 -+ 0. 

The A3 statistics is a measure of the size of fluctuations of a given level sequence 
against a best straight line fit for that level sequence. If s(x) is the staircase function for a 
level sequence (in the variable where the density is uniform) in a given interval, then one 
defines a variance A3 = (mina,s[(s(u) - Au - B)’]), where ( )  denotes an average over 
an ensemble of level sequences. This can be expressed in terms of the two-level kernel 
K(u.  U) [3] .  For the q-Hermite ensemble we obtain the small and large B limits explicitly 

Var(f) = 2 /-&[I - b(k)llf(k)lZ 
T o  

(10) 
1 p S =  

Ads,  j3) = --[ InOns) + y - j] + 7 + 0 (VS)~) 
27C 72R 

for j3 < l/s, which reduces to the GUE result for j3 = 0, and 

for j3 > l/s, which reduces to the Poisson result for B -+ 03. Here C is a numerical 
constant independent of s and very weakly dependent on j3. Note that since the ratio A,/s 
is finite, A3 always has a linear dependence for large enough s, with a slope that increases 
with increasing j3, approaching the Poisson limit for j3 -+ CO. Figure 1 shows the complete 
solution (obtained from numerical evaluation of the integrals involved) for various values of 
p. The deviation from the GliE result as a function of some parameter is qualitatively similar 
to the deviations seen numerically in both the transfer matrix [lo] and energy eigenvalues 
1111 corresponding to the tight-binding Anderson Hamiltonian for disordered conductors, as 
well as for the eigenvalues of the evolution operator corresponding to the Fermi-acceleration 
model [91. 

We find that the statistical properties of the q-Hermite (or the q-Laguerre, in the bulk) 
ensembles are similar to those of a wide variety of quantum systems, including energy 
levels of disordered conductors, studied numerically. Although we are not able to derive 
these ensembles from microscopic Hamiltonians at present, it is useful to explore specific 
spectroscopic signatures of the ensembles so that their relevance to given physical systems 
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Figure 1. A3 s*itisrics as a function of the length s of a level sequence for different values of 
@ for the q-Hennite model. The B = 0 C U N ~  coincides with the om result while the j3 = m 
line coincides with the Poisson result. 
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Figure 2. The function [I - b(k)l showing the change in the correlation hole with inQeasiog 
@. Interpreting k as time and with the dashed lide replacing an ideal vertical drop at very small 
time for finite,number of levels n. this should correspond to the square of the Fourier eansform 
of an experimentally obtained spectram for a system of small disorderd particles. Increasing 
will correspond to increasing disorder [121. 

can be tested experimentally. The obvious problem of looking for evidence of these 
transitions is the difficulty to extract a 'stick spectnun' from experimental data where. a 
large number of levels are. usually lost either in the noise or in unresolved bands. One 
way to avoid this problem is to take direct Fourier transform (FT) of the raw experimental 
data; the ensemble average of the square of the will show a 'correlation hole' if the 
spectrum is chaotic, i.e. if it has a Wigner disnibution [ 171. The size of the correlation 
hole is proportional to [l -b(k)],  where b(k) is the two-level form factor mentioned before. 
We plot this function for the q-Hermite ensemble obtained fiom (5) for various values of 
,9 in figure 2. The depth of the hole decreases from the Wigner result in a specific way 
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towards the Poisson limit of no correlation hole (b(k)  = 0). Thus, for example, microwave 
experiments on ensembles of small metallic particles (of roughly equal size) [18] at various 
disorders might reveal this behaviour (increasing disorder will correspond to increasing p' 
[12]). Of course one needs sufficiently low temperature and small system size so that the 
energy levels are not broadened into a continuum. For a metallic system, a crude estimate 
within a simple electron gas model suggests that for 50 nm size particles one might expect 
to observe the effect at a temperature in the mK range. Because there is no contribution to 
the correlation hole from insulators, it might be possible to put the metallic particles in an 
insulating matrix. 
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195 of Deutsche Forschungsgemeinschaft, when part of this work was done. 

References 

[ I ]  See, for example, Giannoni M-3, Voros A and Zinn-Justin J (eds) 1991 Chaos and Quantum Physics (Les 
Houchss Lll) (New Ymk Elsevier) 

Reichel LE 1992 The Transition to Chnos (Berlin: Springer) 

Brody T A el ol 1981 Rev. Mod. Phys. 53 385 
[2] See. for example, Poner C E (ed) 1965 Starktical Theories OfSpectr~~: Flucruah'onr (New York: Academic) 

[3] See, fa example, Mehta M L 1991 Rnndom Matrices 2nd edn (New Yak Academic) 
[4] Balian R 1968 Nuovo Cimento 57 183. This is required whenever the eigenvalues are unbounded, as in our 

case, while fa bounded eigenvalues the confining potential is not necessq .  
151 Nagao T and Wadati M 1991 1. Phys. Soc. Japan M) 3298. However, note that by scaling into the 'hard edge' 

of the Lagoem ensemble, the spacing distribution deviates from the Wimer distribution; see Tracy C A 
and Wdom H Commun. Math Pkys. to appear. The same conclusion is reached based on the continuum 
approximation of Dyson; see Chen Y and Manning S M 1993 Preprint 

Inailev F M 1988 Phys. Lett 134A 13; 1989 3. Phys. A: Math Gen. 22 865 
[61 Bmdy T A 1974 Len. Nuovo Cimnto 7 482 

[71 Berry M V and Robnik M 1984 J. Phys. A: Math Gen 17 2413 
[SI Shlovskii B I, Shapiro B, Sean B R. Lambrianides P and Shore H B 1993 Phys. Rev. B 47 11 487 
[9] Jose J V and Cordery R 1986 Phys Rev. Len. 56 290 

[IO] Muttalib K A, P i c h d  I-L and Stone A D 1987 Phys. Rev. Len, 59 2475 

[I  11 Hofnetter E and Schrieber M Preprint 
[I21 Mnttalib K A, Chen Y. Ismail M E  H +d Nicopoulos V N 1993 Phys. Rev. Letf. 71 471 
[I31 Askey R A 1989 q-Series and Panitions (IMA vols. in Math and Appl. 84) ed D Stanton (New York 

[I41 Chen Y, Ismail M E H  and Muttalib K A 1992 J. Phys.: Condens. Maner 4 L417; 1993 3. Pkys,: Condew, 

[I51 Halm W 1949 Mark Nackr. 2 4 

[I61 Stone A D, Mello PA, Muftalib K A and Pichard I-L 1991 Mesoscopic Phenomena in Solidr ed B L Altshuler, 

Avishai Y. Pichard 1-L and Munalib K A to be published. 

Springer) 

Moner 5 177 

MO& D S I981 J .  Moth Awl .  Appl. 81 20 

P A  Lee and R A Webb (Amsterdam: Noh-Holland) 
Basor E L  and Tracy C A 1994 3. Stat Phys to appear. See also IS]. 

1171 Leviandier L, Lombardi M, lost R and Pique J P 1986 Phys. Rev. Lcn. 56 2449 
1181 Gorkov L P and Eliashberg Q M 1965 So". Phys.-JmP 21 940. For a recent review on the spctroscopy of 

mesoscopic systems, see Miihlschlegel B Chaos and Quantum Physics (Les Houches Wl) ed M-J Gianaani, 
A Voms and J Z~M-Justin (New York Elsevier) 


